Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete

نویسندگان

چکیده

Abstract This study is aimed to investigate the effect of carbon nanotubes on properties lightweight aggregate concrete containing expanded glass and silica aerogel. Combinations (55%) hydrophobic aerogel particles (45%) were used as aggregates. Carbon sonicated in water with polycarboxylate superplasticizer by ultrasonication energy for 3 min. Study results show that incorporating multi-wall significantly influences compressive strength microstructural performance based concrete. The addition gained almost 41% improvement strength. SEM image shows a homogeneous dispersal within structure. composite presence C–S–H gel surrounding nanotubes, which confirms cites higher growth gel. Besides, agglomeration ettringites was observed transition zone between cementitious materials. Additionally, flowability, absorption, microscopy, X-ray powder diffraction, semi-adiabatic calorimetry analyzed this study.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on diffusion coefficient of benzene and ethyl benzene vapours in nanoporous silica aerogel and silica aerogel-activated carbon composites

In this study, nanoporous silica aerogel and silica aerogel-activated carbon composites have been synthesized using a water glass precursor by cost effective ambient pressure drying method. Equilibrium and kinetics of benzene and ethyl benzene adsorption on silica aerogel and its composites have been measured in a batch mode at tree weights of adsorbent. For the first time, the experimental dat...

متن کامل

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

Effects of Multi-Walled Carbon Nanotubes on The Mechanical Properties of Glass/Polyester Composites

Excellent mechanical properties of carbon nanotubes (CNTs) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. The glass/polyester composites are widely used in many industries and applications. Improving the mechanical properties of such composites with addition of CNTs can increase their applications. In this research, multi-walled carbo...

متن کامل

Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to th...

متن کامل

Influence of Nano-silica and Polypropylene Fibers on Bond Strength of Reinforcement and Structural Lightweight Concrete (RESEARCH NOTE)

In this study, first by surveythe parameters affecting the compressive strength, such as water to cement ratio, cementgrade, silica fume to cement percentage, and the various ratios oflight weight aggregate LECA, to total aggregate, Taguchi method is used, to test 9 mix designsobtained the mix design optimization. Since lightweight concrete is brittle like normal concrete, to resolve this probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2021

ISSN: ['2045-2322']

DOI: https://doi.org/10.1038/s41598-021-81665-y